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The two main kinds of E- actions
.

The global goal is to understand

pnp actions of dbl groups up to isomorphism .

It turns out

that this task is hopeless even for 2
.

So let's start nudist}
by defining some properties of 1-actions tht can be used
to distinguish two such actions

.

One such property is ergodicih , but every action of K adit,
au ergodic decomposition ,

so
it makes more sense he focus

on ergodic action I try he distinguish two >uh actions
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There are two fundamental properties of actions of 2 :

compactness and weak mixing .

Weak mixing . Before defining ,

let's state and prove an equivalent condition
to ergodicih tht is similar to the definition of /strong)
mixing ,

so that then we define weak nixing as

somethingin between
.
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(this theorem can be deduced directly using basic Hilbert

space theory .) But inner product with
agg Eli is
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We now argue
tht weak rixiy is

"

loser" to strong mixing
than he just ergodicib .
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define its upper density by
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When the fig.LY?YH- exists
,
we call it density and denote dlml .

Remark
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